Utility of cerebrospinal fluid drug concentration as a surrogate for unbound brain concentration in nonhuman primates.

نویسندگان

  • Yoko Nagaya
  • Yoshitane Nozaki
  • Kazumasa Kobayashi
  • Osamu Takenaka
  • Yosuke Nakatani
  • Kazutomi Kusano
  • Tsutomu Yoshimura
  • Hiroyuki Kusuhara
چکیده

In central nervous system drug discovery, cerebrospinal fluid (CSF) drug concentration (C(CSF)) has been widely used as a surrogate for unbound brain concentrations (C(u,brain)). However, previous rodent studies demonstrated that when drugs undergo active efflux by transporters, such as P-glycoprotein (P-gp), at the blood-brain barrier, the C(CSF) overestimates the corresponding C(u,brain). To investigate the utility of C(CSF) as a surrogate for interstitial fluid (ISF) concentration (C(ISF)) in nonhuman primates, this study simultaneously determined the C(CSF) and C(ISF) of 12 compounds, including P-gp substrates, under steady-state conditions in cynomolgus monkeys using intracerebral microdialysis coupled with cisternal CSF sampling. Unbound plasma concentrations of non- or weak P-gp substrates were within 2.2-fold of the C(ISF) or C(CSF), whereas typical P-gp substrates (risperidone, verapamil, desloratadine, and quinidine) showed ISF-to-plasma unbound (K(p,uu,ISF)) and CSF-to-plasma unbound concentration ratios (K(p,uu,CSF)) that were appreciably lower than unity. Although the K(p,uu,CSF) of quinidine, verapamil, and desloratadine showed a trend of overestimating the K(p,uu,ISF), K(p,uu,CSF) showed a good agreement with K(p,uu,ISF) within 3-fold variations for all compounds examined. C(u,brain) of some basic compounds, as determined using brain homogenates, overestimated the C(ISF) and C(CSF). Therefore, C(CSF) could be used as a surrogate for C(ISF) in nonhuman primates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unbound drug concentration in brain homogenate and cerebral spinal fluid at steady state as a surrogate for unbound concentration in brain interstitial fluid.

The objective of the present study was to examine the accuracy of using unbound brain concentration determined by a brain homogenate method (C(ub)), cerebral spinal fluid concentration (C(CSF)), and unbound plasma concentration (C(up)) as a surrogate for brain interstitial fluid concentration determined by brain microdialysis (C(m)). Nine compounds-carbamazepine, citalopram, ganciclovir, metocl...

متن کامل

An evaluation of using rat-derived single-dose neuropharmacokinetic parameters to project accurately large animal unbound brain drug concentrations.

Previous publications suggest that interstitial fluid compound concentrations (C(ISF)) best determine quantitative neurotherapeutic pharmacology relationships, although confirming large animal C(ISF) remains elusive. Therefore, this work primarily evaluated using respective acute dose, rat-derived unbound brain compound concentration-to-unbound plasma compound concentration ratios (C(b,u)/C(p,u...

متن کامل

Zidovudine concentration in brain extracellular fluid measured by microdialysis: steady-state and transient results in rhesus monkey.

We measured zidovudine concentrations in blood, muscle, and brain extracellular fluid (ECF) by microdialysis and in serum ultrafiltrate and cerebrospinal fluid (CSF) samples during a continuous intravenous infusion (15 mg/kg/h) and after bolus dosing (50-80 mg/kg over 15 min) in nonhuman primates to determine whether CSF drug penetration is a valid surrogate for blood-brain barrier penetration....

متن کامل

Receptor occupancy and brain free fraction.

This study was designed to investigate whether brain unbound concentration (C(u,brain)) is a better predictor of dopamine D(2) receptor occupancy than total brain concentration, cerebrospinal fluid concentration (C(CSF)), or blood unbound concentration (C(u,blood)). The ex vivo D(2) receptor occupancy and concentration-time profiles in cerebrospinal fluid, blood, and brain of six marketed antip...

متن کامل

Quantitative evaluation of the impact of active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier on the predictability of the unbound concentrations of drugs in the brain using cerebrospinal fluid concentration as a surrogate.

This study investigated the impact of the active efflux mediated by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) at the blood-brain barrier (BBB) on the predictability of the unbound brain concentration (C(u,brain)) by the concentration in the cerebrospinal fluid (CSF) (C(u,CSF)) in rats. C(u,brain) is obtained as the product of the total brain concentration and unbound fra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and pharmacokinetics

دوره 29 5  شماره 

صفحات  -

تاریخ انتشار 2014